skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wallace, J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Quasi-brittle fracture mechanics is used to evaluate fracture of human cortical bone in aging. The approach is demonstrated using cortical bone bars extracted from one 92-year-old human male cadaver. In-situ fracture mechanics experiments in a 3D X-ray microscope are conducted. The evolution of the fracture process zone is documented. Fully developed fracture process zone lengths at peak load are found to span about three osteon diameters. Crack deflection and arrest at cement lines is a key process to build extrinsic toughness. Strength and toughness are found as size-dependent, not only for laboratory-scale experimental specimens but also for the whole femur. A scaling law for the length fracture process zone is used. Then, size-independent, tissue fracture properties are calculated. Linear elastic fracture mechanics applied to laboratory beam specimens underestimates the tissue toughness by 60%. Tissue fracture properties are used to predict the load capacity of the femur in bending within the range of documented data. The quasi-brittle fracture mechanics approach allows for the assessment of the combined effect of bone quantity and bone quality on fracture risk. However, further work is needed considering a larger range of subjects and in the model validation at the organ length scale. 
    more » « less
  2. Context.Stars form preferentially in clusters embedded inside massive molecular clouds, many of which contain high-mass stars. Thus, a comprehensive understanding of star formation requires a robust and statistically well-constrained characterization of the formation and early evolution of these high-mass star clusters. To achieve this, we designed the ALMAGAL Large Program that observed 1017 high-mass star-forming regions distributed throughout the Galaxy, sampling different evolutionary stages and environmental conditions. Aims.In this work, we present the acquisition and processing of the ALMAGAL data. The main goal is to set up a robust pipeline that generates science-ready products, that is, continuum and spectral cubes for each ALMAGAL field, with a good and uniform quality across the whole sample. Methods.ALMAGAL observations were performed with the Atacama Large Millimeter/submillimeter Array (ALMA). Each field was observed in three different telescope arrays, being sensitive to spatial scales ranging from ≈1000 au up to ≈0.1 pc. The spectral setup allows sensitive (≈0.1 mJy beam−1) imaging of the continuum emission at 219 GHz (or 1.38 mm), and it covers multiple molecular spectral lines observed in four different spectral windows that span about ≈4 GHz in frequency coverage. We have designed a Python-based processing workflow to calibrate and image these observational data. This ALMAGAL pipeline includes an improved continuum determination, suited for line-rich sources; an automatic self-calibration process that reduces phase-noise fluctuations and improves the dynamical range by up to a factor ≈5 in about 15% of the fields; and the combination of data from different telescope arrays to produce science-ready, fully combined images. Results.The final products are a set of uniformly generated continuum images and spectral cubes for each ALMAGAL field, including individual-array and combined-array products. The fully combined products have spatial resolutions in the range 800–2000 au, and mass sensitivities in the range 0.02–0.07M. We also present a first analysis of the spectral line information included in the ALMAGAL setup, and its potential for future scientific studies. As an example, specific spectral lines (e.g., SiO and CH3CN) at ≈1000 au scales resolve the presence of multiple outflows in clusters and will help us to search for disk candidates around massive protostars. Moreover, the broad frequency bands provide information on the chemical richness of the different cluster members, which can be used to study the chemical evolution during the formation process of star clusters. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  3. Vernet, Joël R; Bryant, Julia J; Motohara, Kentaro (Ed.)
  4. Abstract Young, self-luminous super-Jovian companions discovered by direct imaging provide a challenging test for planet formation and evolution theories. By spectroscopically characterizing the atmospheric compositions of these super-Jupiters, we can constrain their formation histories. Here we present studies of the recently discovered HIP 99770 b, a 16MJuphigh-contrast companion on a 17 au orbit, using the fiber-fed high-resolution spectrograph KPIC ( R ∼ 35,000) on the Keck II telescope. OurK-band observations led to detections of H2O and CO in the atmosphere of HIP 99770 b. We carried out free retrieval analyses usingpetitRADTRANSto measure its chemical abundances, including the metallicity and C/O ratio, projected rotation velocity ( v sin i ), and radial velocity (RV). We found that the companion’s atmosphere has C/O = 0.55 0.04 + 0.06 and [M/H] = 0.26 0.23 + 0.24 (1σconfidence intervals), values consistent with those of the Sun and with a companion formation via gravitational instability or core accretion. The projected rotation velocity v sin ( i ) < 7.8 km s−1is small relative to other directly imaged companions with similar masses and ages. This may imply a nearly pole-on orientation or effective magnetic braking by a circumplanetary disk. In addition, we added the companion-to-primary relative RV measurement to the orbital fitting and obtained updated constraints on orbital parameters. Detailed characterization of super-Jovian companions within 20 au like HIP 99770 b is critical for understanding the formation histories of this population. 
    more » « less
  5. The Milky Way’s Central Molecular Zone (CMZ) differs dramatically from our local solar neighbourhood, both in the extreme interstellar medium conditions it exhibits (e.g. high gas, stellar, and feedback density) and in the strong dynamics at play (e.g. due to shear and gas influx along the bar). Consequently, it is likely that there are large-scale physical structures within the CMZ that cannot form elsewhere in the Milky Way. In this paper, we present new results from the Atacama Large Millimeter/submillimeter Array (ALMA) large programme ACES (ALMA CMZ Exploration Survey) and conduct a multi-wavelength and kinematic analysis to determine the origin of the M0.8–0.2 ring, a molecular cloud with a distinct ring-like morphology. We estimate the projected inner and outer radii of the M0.8–0.2 ring to be 79″ and 154″, respectively (3.1 pc and 6.1 pc at an assumed Galactic Centre distance of 8.2 kpc) and calculate a mean gas density >104cm−3, a mass of ~106M, and an expansion speed of ~20 km s−1, resulting in a high estimated kinetic energy (>1051erg) and momentum (>107Mkm s−1). We discuss several possible causes for the existence and expansion of the structure, including stellar feedback and large-scale dynamics. We propose that the most likely cause of the M0.8–0.2 ring is a single high-energy hypernova explosion. To viably explain the observed morphology and kinematics, such an explosion would need to have taken place inside a dense, very massive molecular cloud, the remnants of which we now see as the M0.8–0.2 ring. In this case, the structure provides an extreme example of how supernovae can affect molecular clouds. 
    more » « less
  6. Context. A large fraction of stars form in clusters containing high-mass stars, which subsequently influences the local and galaxy-wide environment. Aims. Fundamental questions about the physics responsible for fragmenting molecular parsec-scale clumps into cores of a few thousand astronomical units (au) are still open, that only a statistically significant investigation with ALMA is able to address; for instance: the identification of the dominant agents that determine the core demographics, mass, and spatial distribution as a function of the physical properties of the hosting clumps, their evolutionary stage and the different Galactic environments in which they reside. The extent to which fragmentation is driven by clumps dynamics or mass transport in filaments also remains elusive. Methods. With the ALMAGAL project, we observed the 1.38 mm continuum and lines toward more than 1000 dense clumps in our Galaxy, withM≥ 500 M, Σ ≥ 0.1 g cm−2andd≤ 7.5 kiloparsec (kpc). Two different combinations of ALMA Compact Array (ACA) and 12-m array setups were used to deliver a minimum resolution of ∼1000 au over the entire sample distance range. The sample covers all evolutionary stages from infrared dark clouds (IRDCs) to H IIregions from the tip of the Galactic bar to the outskirts of the Galaxy. With a continuum sensitivity of 0.1 mJy, ALMAGAL enables a complete study of the clump-to-core fragmentation process down toM∼ 0.3 Macross the Galaxy. The spectral setup includes several molecular lines to trace the multiscale physics and dynamics of gas, notably CH3CN, H2CO, SiO, CH3OH, DCN, HC3N, and SO, among others. Results. We present an initial overview of the observations and the early science product and results produced in the ALMAGAL Consortium, with a first characterization of the morphological properties of the continuum emission detected above 5σin our fields. We used “perimeter-versus-area” and convex hull-versus-area metrics to classify the different morphologies. We find that more extended and morphologically complex (significantly departing from circular or generally convex) shapes are found toward clumps that are relatively more evolved and have higher surface densities. Conclusions. ALMAGAL is poised to serve as a game-changer for a number of specific issues in star formation: clump-to-core fragmentation processes, demographics of cores, core and clump gas chemistry and dynamics, infall and outflow dynamics, and disk detections. Many of these issues will be covered in the first generation of papers that closely follow on the present publication. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  7. Abstract We present high-resolutionK-band emission spectra of the quintessential hot Jupiter HD 189733 b from the Keck Planet Imager and Characterizer. Using a Bayesian retrieval framework, we fit the dayside pressure–temperature profile, orbital kinematics, mass-mixing ratios of H2O, CO, CH4, NH3, HCN, and H2S, and the13CO/12CO ratio. We measure mass fractions of logH 2 O = 2.0 0.4 + 0.4 and logCO = 2.2 0.5 + 0.5 , and place upper limits on the remaining species. Notably, we find logCH4< −4.5 at 99% confidence, despite its anticipated presence at the equilibrium temperature of HD 189733 b assuming local thermal equilibrium. We make a tentative (∼3σ) detection of13CO, and the retrieved posteriors suggest a12C/13C ratio similar to or substantially less than the local interstellar value. The possible13C enrichment would be consistent with accretion of fractionated material in ices or in the protoplanetary disk midplane. The retrieved abundances correspond to a substantially substellar atmospheric C/O = 0.3 ± 0.1, while the carbon and oxygen abundances are stellar to slightly superstellar, consistent with core-accretion models which predict an inverse correlation between C/O and metallicity. The specific combination of low C/O and high metallicity suggests significant accretion of solid material may have occurred late in the formation process of HD 189733 b. 
    more » « less
  8. Abstract We report on the discovery of linear filaments observed in the CO(1-0) emission for a ∼2′ field of view toward the Sgr E star-forming region, centered at (l,b) = (358.°720, 0.°011). The Sgr E region is thought to be at the turbulent intersection of the “far dust lane” associated with the Galactic bar and the Central Molecular Zone (CMZ). This region is subject to strong accelerations, which are generally thought to inhibit star formation, yet Sgr E contains a large number of Hiiregions. We present12CO(1-0),13CO(1-0), and C18O(1-0) spectral line observations from the Atacama Large Millimeter/submillimeter Array and provide measurements of the physical and kinematic properties for two of the brightest filaments. These filaments have widths (FWHMs) of ∼0.1 pc and are oriented nearly parallel to the Galactic plane, with angles from the Galactic plane of ∼2°. The filaments are elongated, with lower-limit aspect ratios of ∼5:1. For both filaments, we detect two distinct velocity components that are separated by about 15 km s−1. In the C18O spectral line data, with ∼0.09 pc spatial resolution, we find that these velocity components have relatively narrow (∼1–2 km s−1) FWHM line widths when compared to other sources toward the Galactic center. The properties of these filaments suggest that the gas in the Sgr E complex is being “stretched,” as it is rapidly accelerated by the gravitational field of the Galactic bar while falling toward the CMZ, a result that could provide insights into the extreme environment surrounding this region and the large-scale processes that fuel this environment. 
    more » « less